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Abstract

This paper presents a methodology for estimating an index of technological change using
firm-level data in a stochastic frontier production function model that takes into account
time-varying technical inefficiency. In contrast to the Solow divisia index approach, econo-
metric estimation of the index with panel data allows the researcher to separate technical
progress from the stochastic measurement error. Applying the econometric methodology
to a panel of 908 publicly-traded U.S. firms from theCOMPUSTATdatabase, we find evi-
dence of a significant downturn in general technological change for the period, 1970–1989,
whereas the divisia index methodology applied to the same data shows stagnation. When the
sample is divided intoManufacturing, Services, andMiscellaneouscategories we find that
estimates of technological change for the three groups display markedly different stochastic
behavior and that theServicesgroup is the source of the downturn.
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1. Introduction

Economic growth can be characterized as the outcome of a process in which agents strive to
catch up with the leaders. Harberger (1990) hypothesized that most growth in the economy
occurs as firms strive to catch up with those closer to the technological frontier. Thus, the
measurement of technological change has a natural association with a production possibility
frontier. Estimation of the stochastic frontier production function (SFPF), first proposed
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by Aigner, Lovell and Schmidt (1977), allows for the existence of an idealized production
possibility frontier with firm-specific one-sided deviations from the frontier, referred to as
technical inefficiency. The SFPF model, which includes a zero-mean random error added
to the negative technical inefficiency effect, can be used to identify the separate effects of
technological change, factor substitution and firm-specific inefficiencies. Recently, Bauer
(1990) and Kumbhakar and Hjalmarsson (1995) used the SFPF approach to estimate tech-
nological change in a panel data context. However, their studies were limited to analyzing
particular industries. We apply the SFPF model of Battese and Coelli (1992) that allows
for simultaneous estimation of firm-specific and time-varying inefficiency, and an index
of technological change (in the form of time-specific intercepts) to firm-level data from a
broad collection of industries in the U. S for 1970–1989.

We compare the Solow residual methodology, or divisia index approach, to the SFPF
methodology because the Solow methodology is the basis of almost all macroeconomic
studies that focus on the measurement of technological change. In his influential paper,
Solow (1957) demonstrated a methodology for extracting a residual measure from aggrega-
tive national income data through the use of certain assumptions which allowed it to be
identified with technological change.1 Notable among these assumptions are that produc-
tion in the economy can be described by a single constant returns to scale (CRS) production
function, capital and labor inputs are paid their marginal products, and technological change
is Hicks-neutral.2 The Solow residual is calculated by subtracting a weighted sum of the
growth rates of capital and labor inputs from the growth rate of output where the weights
are taken to be the share of these inputs in national income.

A consequence of the divisia approach is that any deviation from the assumptions will
result in measurement error being incorporated into the Solow residual index. Thus, where
possible, application of appropriate statistical techniques that enable the researcher to si-
multaneously estimate an aggregative production function and technological change, and
also to objectively assess the reliability of the estimates, is warranted. Unfortunately,
when limited to the use of a single aggregative time-series of data, standard econometric
techniques do not allow for the separate identification of input substitution, shifts in the
production function, and the stochastic error. This occurs because the resulting number of
parameters to be estimated in the model exceeds the number of data points. However, when
panel data are available, estimation of time-specific intercepts is possible. To illustrate the
difference between the aggregative approach and that of using firm-level data, we compare
the estimation of an aggregative Solow residual divisia index with the statistical estimation
of technological change within an SFPF model for our panel data set. The SFPF estimation
is also applied separately for three broadly-defined industrial sub-categories of our data.

The paper is organized as follows. Section 2 discusses Solow’s methodology for the
measurement of technological change and some arguments for using panel data to measure
technological change. The econometric framework of this paper is described in Section 3.
The data set employed is described in Section 4. Section 5 reports the results of estimation,
compares the full sample technology index with the Solow residual index, and compares
technical progress estimates across the three broadly-defined industry groups. Section 6
explores the autoregressive properties of our technological change index. Section 7 sum-
marizes and concludes the paper.
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2. Technological Change Measurement

In Solow’s model of economic growth, increases in output per worker are obtained through
increases in the amount of employed capital per worker. With increases in capital per
worker the marginal product of capital declines, suggesting the eventual convergence of
capital per worker to a constant ratio which leads to a cessation in the growth of output
per worker. However, output per worker has been increasing at a fairly constant rate in
the U.S. since 1874. This property of the data suggests that an additional factor in the
production function is operating that accounts for the constant growth. To deal with this
fact, Solow (1957) introduced a multifactor productivity index of technological change into
the production function and developed a methodology for extracting a measure of it from
the U.S. National Income and Product Accounts (NIPA) data. Thus, there are two forces
that can result in increases in output growth: 1) substitution of capital for labor which
produces movements along the production function from increases in capital accumulation
over time, and 2) technological change which produces shifts in the production function.
However, without knowing the precise functional form of production one cannot identify
the relative proportion of the growth in output that can be imputed to these two effects.
Thus, some simplifying assumptions which allow for the separation of these two major
sources of growth in the data are required.

To obtain his measure, Solow assumed an aggregate Cobb-Douglas production function
that converts capital(Kt ) and labor(Lt ) inputs into output(Yt ). Technological change is
assumed to be Hicks-neutral so that shifts in the level of output do not change the marginal
rates of substitution of the inputs. With the additional assumption of CRS, the Cobb-
Douglas production function takes the formYt = At Kt

αLt
1−α whereAt is a measure of the

cumulative effect of technological change over time, andα ∈ (0, 1) is the share of capital in
production. The production functionYt may be written in per-capita terms in the following
way:

Yt

Lt
= At

(
Kt

Lt

)α
. (1)

Letting yt = Yt/Lt and kt = Kt/Lt , Solow showed that1At = 1yt − α1kt , where
the operator1 indicates a percentage change. Consequently, the Solow residual is the
difference between a weighted sum of the growth rates of capital and labor inputs and the
growth rate of output where the weights are taken to be the share of these inputs in national
income. For each periodt , data on the share of capital in income, output per unit of labor,
and employed capital per unit of labor are used to obtain1At . To compute the index of
technical change, the initial valueA1 is fixed to be equal to some constant—usually one.
Successive values are calculated recursively using the relationAt = (1+1At )At−1.Under
the assumptions of CRS and perfect factor markets, the ratio of aggregative capital income
to aggregative output is equal to capital’s share in production. Hence, the slope parameter
α may be taken as given rather than having to estimate it along with1At , avoiding the
identification problem of simultaneous estimation ofα and1At .

Researchers, such as Summer (1986), Hall (1987, 1988), Mankiw (1989), and Evans
(1992) have argued that the Solow residual is afflicted with various measurement errors.
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For example, Summers (1986) argues that the Solow residual is contaminated by the phe-
nomenon of labor-hoarding. Hall (1988) on the other hand shows that the Solow residual
is not a proper estimate of technological change in the presence of non-constant returns to
scale due to market power. In particular, Ohta (1975), Denny, Fuss and Waverman (1981)
and Bauer (1990) have shown that in the presence of non-constant returns to scale, the
Solow residual is equal to true technological change plus a bias term that adjusts for the
degree of departure from CRS.3

In response to these criticisms, researchers such as Morrison (1992) attempted to correct
the aggregative Solow residual measure for scale effects. Finn (1995) calculated an ad-
justed version of the Solow residual that accounts for varying rates of capital utilization.4

Additionally, Denny, Fuss and Waverman (1981), Hall (1988), and Domowitz, Hubbard and
Petersen (1988) investigated the impact of markup behavior on the Solow residual.5 Bauer
(1990) demonstrated how changes in cost efficiency over time can affect Solow residual
measurement. He then adjusted the measured Solow residual both for changes in returns
to scale and technical inefficiency.6

These researchers either used national income or aggregative industry-level data to imple-
ment their corrective methodologies. We believe that one potential and significant source of
measurement error is the use of aggregative data itself to calculate an index of technologi-
cal change. The aggregative specification implicitly assumes that an exogenous technology
process affects the production function of every firm in the economy identically, and that ev-
ery firm has the same production structure.7 However, empirical evidence (Mansfield (1989,
1993), Romeo (1975, 1977)) has shown that firms adopt new technological innovations at
different rates.8

If differences among firms are significant, an econometric-based estimate of an index
of technological change with panel data would thus seem to be preferred to the divisia
index approach. Nelson and Winter (1982) have suggested the use of panel data to identify
the two sources of output growth specified in the first paragraph of this section. The
SFPF framework admits a production function which not only accounts for differences in
technical inefficiency across firms as well as over time, but also allows for the existence of
non-constant returns to scale, freeing the model from the possibly restrictive assumptions
required by the divisa index approach. The SFPF framework contains firm-specific effects
that are modeled as one-sided deviations from the production frontier.9 The SFPF model
used in this paper is formally described in the next section.

3. Econometric Methodology

We utilize the time-varying SFPF model of Battese and Coelli (1992) with the additional
assumption of time-specific intercepts to represent the index of neutral technological change
Zt . In this model, given a sample ofN firms for T time periods, the firms are assumed to
produce a single output(Yit ) from inputs of capital(Kit ) and labor(Lit ). With the inclusion
of Zt , the model becomes

Yit = eZt F(Kit , Lit ;β) eVit e−Uit (2)
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where

Uit = e[−η(t−T)]Ui

i = 1, 2, . . . , N

t ∈ τ(i )

Ui ∼ i.i.d.N+(0, σ 2)

Vit ∼ i.i.d.N(0, σv
2).

In the specification above,τ(i ) is the set of time periods with observations for firmi .
The distribution ofUi is taken to be the positive truncation of the normal distribution.10

The scalar parameterη is the rate of change in technical inefficiency. A positive value
(η > 0) is associated with the improvement of technical efficiency of firms over time.
Thus, this specification assumes a particular parameterization of the distribution of technical
inefficiency across firms.11

Taking logarithms and following the translog specification in Griliches and Ringstad
(1971), Equation 2 can be written as:

ln(Yit /Lit ) = Zt + βK ln(Kit /Lit )+ βL ln(Lit )+ βK L ln(Kit ) ln(Lit )

+ βK K (ln(Kit ))
2+ βLL(ln(Lit ))

2+ Vit −Uit . (3)

Following the suggested parameterization in Battese and Coelli (1992) we defineσ 2
S ≡ σ 2+

σ 2
v andγ ≡ σ 2/σ 2

S and estimateσ 2
S, γ, η, µ, the vectorβ = {βK , βL , βK L , βK K , βLL},

and theZt ’s by maximum-likelihood estimation (MLE) methods.

4. The Data

The data used in this study were obtained from Standard and Poor’s annualCOMPUSTAT
database.COMPUSTATcontains income, balance sheet, cash flow, and related financial
information for publicly held U.S. firms. The database contains firms that were traded on
the New York, American, NASDAQ, and regional stock exchanges. The number of firms in
the database varies for a given year. For example, it contains roughly 1400 firms for 1970,
which increases to around 7000 firms for 1989, the terminal year of our study. Standard
and Poor’s collects financial and market-related information from 10-K reports and other
relevant financial documents.

We defineLit to be the number of employees in firmi at time periodt . Standard practice
in this type of study is to define labor in terms of hours worked but this information is not
available inCOMPUSTAT. Capital (Kit ) is defined as the market value of total assets using
the adjustment proposed in Salinger and Summers (1983) and explained in detail in Whited
(1992). We converted capital into real terms with the cost of capital deflator. Our definition
of capital differs from that of studies using “productive” or “employed” capital in that it
is broadly defined to include the value of all assets owned by the firm. This definition is
consistent with the notion in the literature that financial factors matter for productive and
investment purposes.12 OutputYit is taken to be value added, defined as sales less cost of
goods plus inventories, and is converted into real terms with the GDP deflator.13
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Table 1.Data summary statistics.†

Variable Firms Obs. Median Std. Dev. Min Max

Full Sample 908 7105
Y 571.30 5591 0.013 64050
K 732.10 9958 0.041 152500
L 9.40 85.010 0.0020 876.80

K/L 71.90 394.90 2.66 13320
Manufacturing 497 4459

Y 964.60 6144 0.013 55320
K 1072 9221 0.041 152500
L 14.70 93.48 0.0020 876.80

K/L 63.75 209.60 6.29 7769
Services 223 1101

Y 65.90 3531 0.018 64050
K 94.45 7961 0.24 118500
L 1.37 43.97 0.0020 365

K/L 50.23 878.60 2.66 13320
Miscellaneous 188 1545

Y 351 4755 0.18 57930
K 826.80 12770 0.44 149600
L 6.063 78.01 0.0050 854

K/L 142.10 153.40 11.96 1318

†Output (Y) and capital (K ) are in millions of 1982 dollars and labor (L) is in
thousands of employees.

Due to non-reporting of some data items required to calculateKit andYit , quite a few
COMPUSTATfirms had to be excluded from the estimation. For example, 10% of the firms in
the database provide no sales information and 30% do not report a separate inventory figure.
Additionally, the definition of cost of goods reported in theCOMPUSTATdata includes the
dollar value of labor inputs. As payments to labor are a component of the value added
by a firm, the separately-reported labor expense component had to be added to the above
calculation. This expense item is supplementary to the balance sheet, and a large proportion
of firms fail to report it separately, necessitating their exclusion from the sample. In addition,
firms that did not report inventories had to be excluded.14 As non-reporting of these data
items appears to be independent of firm size, type, and industry, we do not expect these
exclusions to introduce any systematic bias into our analysis. Hence, after all exclusions,
the total number of firms for which the required information is available is 908. The data
on these 908 firms are referred to as the full sample.

COMPUSTATalso provides information about the major two-digit SIC categories to which
the firms belong. Using these codes, we subdivide the data into three groups which we
call Manufacturing, Services, andMiscellaneous. TheManufacturinggroup includes SIC
manufacturing codes 20-39,Servicesincludes SIC codes for the Services, Retail Trade, and
Finance, Insurance, and Real Estate categories, andMiscellaneousincludes firms classified
under Transportation, Public Utilities, and Wholesale Trade.15 Table 1 presents summary
statistics on the data used in this study.
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Table 2.Estimated production parameters.†

Full Sample Manufacturing Services Miscellaneous

σ 2
S 0.853∗ (0.054) 0.421∗ (0.030) 1.564∗ (0.166) 0.807∗ (0.097)
γ 0.969∗ (0.002) 0.960∗ (0.003) 0.955∗ (0.006) 0.977∗ (0.003)
η 0.009∗ (0.002) 0.006∗ (0.002) 0.016∗ (0.004) 0.001 (0.002)
βK 0.380∗ (0.009) 0.518∗ (0.033) 0.538∗ (0.074) −0.145 (0.092)
βL −0.020 (0.019) 0.009 (0.012) −0.032 (0.032) −0.124∗ (0.031)
βK L −0.047∗ (0.005) −0.005 (0.007) −0.031 (0.016) −0.119∗ (0.023)
βK K 0.022∗ (0.001) −0.002 (0.003) 0.014 (0.007) 0.060∗ (0.010)
βLL 0.026∗ (0.003) −0.009 (0.004) 0.029∗ (0.011) 0.057∗ (0.014)

†Asymptotic standard errors in parentheses.∗Significant at 5%.

Table 3.Estimated time-specific intercepts.†

Full Sample Manufacturing Services Miscellaneous

Z1970 2.810 (0.016) 2.442 (0.104) 2.437 (0.212) 4.578 (0.252)
Z1971 2.801 (0.028) 2.440 (0.103) 2.443 (0.211) 4.560 (0.249)
Z1972 2.818 (0.025) 2.466 (0.102) 2.390 (0.213) 4.576 (0.247)
Z1973 2.816 (0.030) 2.465 (0.103) 2.358 (0.211) 4.599 (0.249)
Z1974 2.815 (0.020) 2.494 (0.102) 2.308 (0.205) 4.529 (0.245)
Z1975 2.769 (0.028) 2.474 (0.100) 2.259 (0.199) 4.449 (0.237)
Z1976 2.792 (0.027) 2.497 (0.098) 2.320 (0.194) 4.480 (0.232)
Z1977 2.783 (0.021) 2.504 (0.097) 2.238 (0.197) 4.476 (0.228)
Z1978 2.775 (0.031) 2.500 (0.096) 2.250 (0.189) 4.472 (0.225)
Z1979 2.765 (0.027) 2.514 (0.094) 2.237 (0.187) 4.423 (0.220)
Z1980 2.738 (0.028) 2.510 (0.093) 2.217 (0.185) 4.364 (0.214)
Z1981 2.700 (0.029) 2.479 (0.091) 2.215 (0.181) 4.321 (0.208)
Z1982 2.673 (0.030) 2.452 (0.090) 2.199 (0.180) 4.297 (0.203)
Z1983 2.652 (0.026) 2.427 (0.089) 2.131 (0.174) 4.321 (0.203)
Z1984 2.638 (0.021) 2.429 (0.089) 2.082 (0.173) 4.309 (0.203)
Z1985 2.622 (0.030) 2.410 (0.090) 2.097 (0.175) 4.291 (0.204)
Z1986 2.613 (0.016) 2.402 (0.091) 2.094 (0.177) 4.293 (0.206)
Z1987 2.600 (0.018) 2.418 (0.092) 2.012 (0.178) 4.306 (0.208)
Z1988 2.593 (0.022) 2.425 (0.092) 1.928 (0.178) 4.369 (0.210)
Z1989 2.582 (0.029) 2.423 (0.092) 1.969 (0.179) 4.293 (0.209)

†All are significant at 5%. Asymptotic standard errors in parentheses.

5. Results of Estimation

Table 2 presents the estimated parameters of the production function, and Table 3 presents
the estimated time-specific intercepts (Zt ’s) from the MLE of Equation 3 for the full sample
and separate MLE for each of the three broadly-defined industry sub-groups. Estimation
was implemented using a program written in theGAUSScomputer language.16

Table 4 presents the factor elasticity and returns to scale (RTS) estimates, calculated at
the mean input values.17 The hypothesis that the production function displays CRS at the
mean cannot be rejected at the 5% significance level for the full sample nor for any of the
three sub-groups. There is a significant difference between our estimates of the capital and
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Table 4.Estimated mean factor elasticities and returns to scale.†

Full Sample Manufacturing Services Miscellaneous

αK 0.659 (0.020) 0.485 (0.057) 0.587 (0.068) 0.653 (0.141)
αL 0.303 (0.038) 0.501 (0.062) 0.390 (0.077) 0.219 (0.167)
RT S 0.961 (0.041) 0.985 (0.080) 0.977 (0.054) 0.872 (0.206)

†Asymptotic standard errors in parentheses.

labor elasticities (αK andαL ) and those obtained from NIPA. The estimated labor share of
income from NIPA (under Solow’s asssumptions) is 0.64 while our estimate for the full
sample is about 0.30. An important reason for this difference is the nature of our sample
which consists of only publicly-traded firms that are relatively more capital intensive and
larger than the average firm in the economy. Another reason is the broader definition of
capital employed in this study, which includes the current assets from the balance sheet as
part of productive capital.

Figure 1 displays the estimatedZt for the full sample and the calculated Solow resid-
ual from the U.S. National Accounts for the 1970–1989 time-period.18 The graph clearly
demonstrates the disparity between the behavior of the direct estimate of the technical
change index from our sample of firms (Zt ) and the Solow residual index (At ). Our es-
timate of technical progress suggests that during this period, for our firms, there was not
merely a slowdown in productivity, but instead a downturn. Compared to a 4% growth in
the At index, theZt index shows around an 8% drop. This difference is the result of using
panel data and the SFPF model that allows for departures from the CRS assumption and
accounts for the technical inefficiency differential across firms and over time. Thus, the
importance of allowing for these factors, as emphasized in the work of Bauer (1992) and
Finn (1995), is clearly evident.

Figure 2 displays four series: the estimatedZt for the full sample using both the trans-log
and Cobb-Douglas specifications, and a divisia index (At ) calculated from aggregates of the
same data using both 0.36 (obtained from MLE of the SFPF with Cobb-Douglas production)
and 0.64 (obtained from the NIPA accounts) for labor’s share. It can be seen from the graph
that the estimatedZt ’s from the two production function specifications are quite similar, but
the Cobb-Douglas estimate is slightly higher than the trans-log estimate. The divisia index
estimates of technical change (theAt ’s), however, are quite different from the econometric
estimates. For a labor share value of 0.64 the At index shows a stagnant technological
change. In contrast, when theAt is calculated using 0.36 for labor share, it shows a decline
of about 20%.19 Thus, the difference between the technical change estimates obtained from
the two methodologies is evidently the result of correctly estimating the elasticities. Hence,
correct estimation methods are critical in estimating technological change, assuming one
has access to correct data.

We conducted various hypothesis tests of restrictions on the parameters of the production
structure for the full sample and the different sub-groups. These generalized likelihood
ratio statistics along with the asymptotic critical value are reported in Table 5.20 A test
of the restriction thatZt was constant over time (Test 1) was rejected for the full sample,
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Figure 1. The Solow residualAt from the NIPA accounts using 0.64 for labor’s share, andZt from MLE. For
comparison purposes,Zt has been normalized to a starting value of 1.

Manufacturing, andServices, but not for theMiscellaneousgroup. A test of the restriction
of constant efficiency over time (η = 0, Test 2) was rejected for the Full Sample and all
of the sub-groups. A joint test of both of these restrictions (i. e.η = 0 andZt constant)
(Test 3) was rejected for the Full Sample and for all of the three groups. A test that all the
estimated parameters were common across all of the groups (Test 4) was rejected. Thus,
separate MLE for the sub-groups is preferable to MLE of the full sample. Evidently, a
significant degree of heterogeneity exists across these three groups, which is also apparent
from the estimated values of the production parameters in Tables 2 and 4. Finally, a test of
the Cobb-Douglas specification versus trans-log (Test 5) shows that the Cobb-Douglas is
rejected in every case.

Figure 3 displays the estimatedZt process for each category. The series are normalized to
begin from a common value of one.21 It is evident from the graph that most of the downturn
in the technological change index for our sample can be attributed to theServicesgroup
as the indices for the other two groups remain relatively flat. This result is in conformity
with the findings of Bauer (1992). Bauer analyzed the productivity slowdown for the
same time period and attributed it to be a natural response to unbalanced growth, which
shifts resources from sectors where the productivity growth rate is higher (manufacturing),
to sectors where productivity growth is relatively stagnant (services).22 A reason for the
stagnant growth, as discussed by Bauer, is the inherent labor-intensity of the service sector,
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Figure 2. Comparison of two divisia index estimates (At ), and two SFPF estimates ofZt , all using the same data.
For comparison purposes, theZt ’s have been normalized to a starting value of 1.

Table 5.Generalized likelihood ratio tests.

Null Hypothesis χ2
0.95 DF Full Manf. Serv. Misc.

1. Zt constant over time (Zt = Z ∀ t) 30.14 19 243.2∗ 206.0∗ 49.6∗ 63.4∗
2. No change in efficiency over time (η = 0) 3.84 1 45.8∗ 10.0∗ 14.2∗ 0.2
3. Simultaneous test of Hypotheses 1. & 2. 31.41 20 253.4∗ 208.0∗ 50.2∗ 65.4∗
4. Shared parameters across groups 74.54 56 1657.4∗ − − −
5. Cobb-Douglas v. trans-log specification 7.81 3 81.6∗ 28.0∗ 12.2∗ 24.0∗

∗Rejected at the 5% level of significance.

which constrains the ability of firms to exploit productivity gains by substituting capital for
labor. This is critical in light of technological improvements in the industrial sector over
the last two decades. For example, Shephard (1982), Carlsson (1984, 1988), and Piore and
Sable (1984) suggest that the development of numerically-controlled machines have made
production techniques more flexible and have brought down the minimum efficient scale of
production in the manufacturing sector since the 1970’s.23 Empirical evidence points toward
a structural shift in the relative importance of services as a percentage of U.S. GNP. For the
1970–1985 period, the share of services in GNP grew 21%, retail and wholesale trade grew
10.3%, and finance, insurance and real estate grew 8.7%, compared with a 3.6% growth
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Figure 3. Maximum likelihood estimates ofZt for the three industrial groups.

rate in the share of the manufacturing sector over the same period.24 Given that the share of
services has risen, a downward trend in this sector will bring the overall productivity down.

6. Time-series Behavior of Technological Change

A critical component of computable stochastic general equilibrium growth models is the
nature of the technology shock process that affects the production possibility frontier. In
these models, technological change is typically formulated as a highly persistent autore-
gressive process of order one, modeled in accordance with the behavior of Solow residuals
obtained from the aggregative data. Business cycle proponents, notably Prescott (1986a,b),
have suggested that technology shocks can account for a major proportion of U.S. GNP
fluctuations. In this section we discuss the time-series behavior of the estimatedZt .

We fit an autoregressive process of order one (AR(1)) with a time trend of the following
form:

Zt = α + ρZt−1+ θ t + et . (4)

Traditionally the literature that discusses the general equilibrium implications of the Solow
residual applies a linear model of this type. We are thus conducting a second-stage estima-
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Table 6.Time series behavior ofZt .†

Full Sample Manuf. Serv. Misc. At (NIPA) At (0.64) At (0.36)

α 0.937∗ 0.564 1.825∗ 1.691 0.564∗ 0.617∗ 0.427∗
(0.411) (0.308) (0.598) (0.943) (0.221) (0.186) (0.192)

ρ 0.672∗ 0.777∗ 0.250 0.628∗ 0.431 0.441∗ 0.635∗
(0.143) (0.124) (0.243) (0.205) (0.223) (0.173) (0.172)

θ −0.005∗ −0.002∗ −0.018∗ −0.006 0.001 −0.001 −0.007∗
(0.002) (0.001) (0.006) (0.004) (0.001) (0.001) (0.002)

σe 0.014 0.017 0.035 0.038 0.013 0.025 0.035
R2 0.975 0.821 0.945 0.888 0.594 0.308 0.873

†Estimation of the equationXt = α+ ρXt−1+ θ t + et , wheret = 1 . . .20, andXt represents
either the estimate ofZt for the indicated sample, the Solow residualAt (NIPA), or the sample
Solow residualsAt (0.64) andAt (0.36).
∗Statistically significant at 5%.

tion of an autoregressive process on theZt index which was previously assumed to be fixed.
While the inclusion of the additional restriction imposed by Equation 4 within the maximum
likelihood estimation would therefore be the preferred method, we found this approach to
be intractable. However, this simpler second stage estimate is feasible. In addition, it allows
for a direct comparison between the autoregressive properties of theZt estimates for the
various groups andAt . Table 6 presents the results of estimating Equation 4 on the different
indices. ForZt from the full sample, the autoregressive parameterρ is 0.67 and is statis-
tically significant. This value ofρ is different from the 0.95 value typically obtained from
the NIPA by analyzing the Solow residuals for the 1950–1990 quarterly data. For the 1970–
1989 time period, fitting anAR(1) to the annual Solow residual from the NIPA (At (NIPA))
yielded an estimated value ofρ of only 0.43. This is much lower than the estimatedρ for
our sample of firms. Researchers have found that the autoregressive parameterρ drops and
the variance of the error termet rises as one moves from quarterly data to annual.25 Hence,
accounting for non-constant returns to scale and technical inefficiency by using panel data
has the effect of restoring the persistence level of the technical change index.26 This result is
useful for business cycle modelers, as the ability of their models to mimic the business cycle
features is critically dependent upon the value of the autoregressive parameterρ.27 In the
table, we also present the results of estimating anAR(1) process on the sample-dependent
Solow residual calculated using the 0.64 for labor’s share from the NIPA estimate. This
estimate has a value ofρ (0.44) which is very close to that of the Solow from NIPA, and
smaller than the 0.67 value for the full sample. In contrast, when the correctly estimated
value of labor share (0.36) obtained from the SFPF model is used to calculate the Solow
residual from the same data, the autoregressive parameterρ is 0.64. This value is closer to
what is estimated for the indexZt . Thus, these results support our hypothesis that correct
modeling is critical for calculating the properties of technological change.

Fitting anAR(1) process to the three different groups shows the heterogeneity evident in
the value of theρ parameter. TheManufacturinggroup exhibits a value ofρ (0.78) that is
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higher than that of the full sample, but theρ for theServicesgroup (0.25) is much smaller,
and is statistically insignificant. Given that a higher value ofρ implies a more persistent
process, the persistence level of theZt series differs substantially across these three groups.
For the full sample, as well as the three groups, the estimated time trend coefficientθ is
negative, but is insignificant for theMiscellaneousgroup.

7. Summary and Conclusions

The ability of computable general equilibrium models to explain fluctuations in economic
aggregates depends critically on the stochastic properties of technological change. The
properties of these changes are based on the behavior of the Solow residual, which has been
criticized as a measure of technological change. To derive this residual from aggregative
data, researchers have utilized a divisia index technique that assumes CRS, perfect factor
markets, and that firms share a common production structure. These assumptions make it
possible to separate growth induced by the substitution of labor for capital from growth due
to technological progress. Numerous researchers have demonstrated that these assumptions
do not hold in practice.

To circumvent the strong assumptions required of the Solow residual, we have proposed
an alternative methodology for deriving an index of technological change. This index is
directly estimated in the context of panel data by using a SFPF approach which controls
for firm-specific and time-varying technical inefficiency. Applying the technique to a
large panel of U.S. firms, we find evidence of a significant decline in the technological
index over the 1970–1989 time period. Subdividing our sample into three broadly-defined
industrial groups, we find that this downturn can be attributed to a decline in theServices
group. Estimating an autoregressive process on the separate technological change indices
reveals varying degrees of persistence across the three groups. Compared with the divisia
index approach, these results have the implication that simultaneously estimating technical
efficiency along with other production parameters in a panel data context gives markedly
different behavior for estimated technological change.

Notes

1. See Griliches (1996) for historical background.

2. The first two assumptions characterize perfect competition. Technological change is assumed to be Hicks-
neutral in the sense that the marginal rate of substitution between inputs is unaffected by shifts of the production
function.

3. Additionally, according to Hall (1990), under the assumptions of perfect competition and CRS, the Solow
residual should be uncorrelated with any variable that is uncorrelated with the rate of growth of true productivity.
Using annual data at the industry level, Hall found that the Solow residual was highly correlated with the growth
of military expenditures and changes in world oil prices, instruments reasonably thought to be exogenous.
He concluded that the failure of the invariance property was due to an increasing returns to scale production
function.

4. The rate of capital utilization is one aspect of technical inefficiency.

5. Domowitz, Hubbard and Petersen (1988) and Hall (1988) use aggregative industry-level data.
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6. See Bauer (1990), Equation 24.

7. By production structurewe mean not only the relationship between inputs and output(s), but also techni-
cal inefficiency, and any firm-specific attributes such as managerial quality, advertising strategy, intangible
resources of the firm, etc.

8. Empirical literature on the diffusion rate of technological innovations finds that different industries react very
differently to the same innovation. For example, according to Mansfield (1989), the diffusion rate of industrial
robots was 12 years for the overall economy, but ranged from 3 years in the steel industry to 15 years in
automobiles. In addition, Mansfield (1993) found that small firms adopted technological innovations later
than large firms.

9. In the SFPF framework a firm is specified to be a one-period expected profit maximizer where certain id-
iosyncratic effects such as the weather or global economic conditions are not necessarily under its control.
According to Greene (1993), one can view each firm in the model as facing its own frontier which is randomly
placed by any number of stochastic elements that might affect output but cannot be controlled by the firm.

10. In the model of Battese and Coelli (1992), theUi ’s are assumed to be independent and identically distributed
non-negative truncations of theN(µ, σ 2) distribution. For this data, inclusion ofµ in the likelihood function
prevented precise estimation of the other parameters because the function is quite flat in the dimension ofµ.
See Greene (1993) for a discussion of this point.

11. A detailed specification would potentially allow the time-varying component of technical efficiency to depend
on firm-specific attributes as well. For an example see Battese and Coelli (1995).

12. See Gertler (1988) and Jaffe and Stiglitz (1990) for a literature survey that emphasizes the role of balance-
sheet and liquidity position for production. Numerous panel-data studies (e.g. Fazzari, Hubbard and Peterson
(1988), Gilchrist (1990), Whited (1992), Dhawan (1997)) provide empirical support for this assertion.

13. The use of value added in the estimation of this production function, which includes only capital and labor
inputs, means that changes in non-specified inputs such as the quantities and prices of materials used in
production will be measured as changes in technical efficiency orZt .

14. Inventory is used to calculate value added. At the suggestion of a referee we examined the implications of
including firms in the estimation that did not have a separate inventory figure. This increased the number of
observations by 20%. Including them slightly reduced the autoregressive properties of theZt estimates without
changing substantially other properties of the model. This reduction in autocorrelation is to be expected since
the level of inventories for a given period are closely related to the level of value added in adjacent periods.
Since including these firms involves a mis-specification of value added and affects the estimates in a dimension
important to this paper, we have chosen to exclude them.

15. Italics are used to distinguish the broadly-defined groups of our sample from other definitions.

16. The program is available from the authors upon request. It requiresGAUSSversion 3.1.1 and the accompanying
OPTMUMoptimization package.

17. Due to the trans-log specification of production, the elasticity and RTS estimates will vary for different input
combinations.

18. The Solow residual was calculated using 0.64 for labor’s share. For comparison purposes, the estimatedZt

parameters in this and subsequent figures have been normalized by dividing by the initialZ1.
19. We use the Cobb-Douglas specification based estimate of labor share instead of the trans-log estimate as it is

consistent with the Solow residual methodology. However, using the trans-log based estimate of labor share,
a similar decline is evident.

20. The test results are based on the asymptotic critical values which assume the existence of a large sample. Thus,
tests on groups with a greater number of data points are less likely to be subject to a Type I or Type II error
than those with fewer data points.

21. This was done by dividing each series by its initial value.

22. An exception is the high productivity growth in the telecommunication industry which is part of the services
sector.

23. In addition, the emergence of new computer-based technology has improved quality of small-scale production
relative to standardized mass production techniques.

24. 1990 Economic Report of the President, Table C-11.

25. See Christiano and Eichenbaum (1992).
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26. The persistence of anAR(1) process is higher, the higher the value ofρ.

27. See Prescott (1986b).
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